
Properties of constraint-based single-point approximate kinetic energy functionals

V. V. Karasiev,1,2,* R. S. Jones,3 S. B. Trickey,2,† and Frank E. Harris2,4

1Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado 21827, Caracas 1020-A, Venezuela
2Quantum Theory Project, Departments of Physics and of Chemistry, University of Florida, Gainesville, Florida 32611, USA

3Department of Physics, Loyola College in Maryland, 4501 N. Charles Street, Baltimore, Maryland 21210, USA
4Department of Physics, University of Utah, Salt Lake City, Utah, 84112 USA

�Received 10 September 2008; revised manuscript received 6 November 2009; published 31 December 2009�

We present an analysis and extension of our constraint-based approach to orbital-free �OF� kinetic-energy
�KE� density functionals intended for the calculation of quantum-mechanical forces in multiscale molecular-
dynamics simulations. Suitability for realistic system simulations requires that the OF-KE functional yield
accurate forces on the nuclei yet be computationally simple. We therefore require that the functionals be based
on density-functional theory constraints, be local, be dependent at most upon a small number of parameters
fitted to a training set of limited size, and be applicable beyond the scope of the training set. Our previous
“modified-conjoint” generalized-gradient-type functionals were constrained to producing a positive-definite
Pauli potential. Though distinctly better than several published generalized-gradient-approximation-type func-
tionals in that they gave semiquantitative agreement with Born-Oppenheimer forces from full Kohn-Sham
results, those modified-conjoint functionals suffer from unphysical singularities at the nuclei. Here we show
how to remove such singularities by introducing higher-order density derivatives and analyze the conse-
quences. We give a simple illustration of such a functional and a few tests of it.
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I. INTRODUCTION

Simulation of the structure and properties of complicated
materials is a demanding task, particularly away from equi-
librium, for example, in the simultaneous presence of sol-
vents and mechanical stress. Though the present results are
not limited to it, our motivating problem has been tensile
fracture of silica in the presence of water.

For such problems, quantum-mechanical treatment of the
reactive zone is essential at least at the level of realistic
Born-Oppenheimer �B-O� forces to drive an otherwise clas-
sical molecular-dynamics �MD� or molecular mechanics
�MM� calculation. Computational cost then leads to a nested-
region strategy. Internuclear forces in the reactive zone are
obtained from an explicitly quantum-mechanical treatment.
Forces between other nuclei are calculated from classical po-
tentials. Such partitioning is called multiscale simulation in
the computational materials community and QM/MD �or
QM/MM� methodology in computational molecular biology.

The QM calculation is the computationally rate-limiting
step. QM approximations good enough yet computationally
fast on the scale of the MD algorithms are therefore critical.
Both the inherent form and the growing dominance of
density-functional theory �DFT� for describing molecular,
biomolecular, and materials systems make it a reasonable
candidate QM. Despite advances in pseudopotentials and
order-N approximations, however, solution of the DFT
Kohn-Sham �KS� problem is too slow computationally to be
fully satisfactory. An alternative, Car-Parrinello dynamics,1

does not guarantee that the motion is restricted to the B-O
energy surface.

Thus, there is continuing need for methods which yield
essentially full DFT accuracy at significantly lower compu-
tational cost. In response, we and co-workers proposed and
demonstrated a graded sequence of approximations2 scheme.

Its essence is use of a simple classical potential for the ma-
jority of MD steps, with periodic correction by calibration to
forces obtained from more accurate but slower methods. An
example graded sequence of approximations would be as
follows: �1� classical potential; �2� simple reactive �charge
redistribution� potential;3–5 �3� orbital-free �OF� DFT, the
subject of this paper; �4� quasi-spin-density DFT �Ref. 6� �a
way to approximate spin-dependent effects at the cost of
non-spin-polarized KS-DFT�; �5� full spin-polarized DFT
�the level of refinement ultimately required for bond break-
ing�.

In this hierarchy, a large gap in computational cost sepa-
rates reactive potentials and quasi-spin-density DFT. Since
the cost of conventional KS calculations comes from solving
for the KS orbitals, an obvious candidate to fill the gap is
listed: OF-DFT. The long-standing barrier is a lack of an
effective OF approximation to the kinetic energy �KE�.
Background and a description of our first OF-KE functionals
were reported in a paper addressed to the computational ma-
terials science community,7 with a more didactic survey in
Ref. 8. The present analysis focuses on identifying the causes
of limitations of those functionals and ways to eliminate
those limitations.

II. BACKGROUND AND BASICS

Construction of an accurate, explicit, total electronic ki-

netic energy density functional T�n�= ���T̂��� for a many-
electron system in state ��� with electron number density n
is an unresolved task.9–11 The Coulomb virial theorem sug-
gests that the task is equivalent to seeking the total energy
functional itself. The Kohn-Sham KE is thus a more attrac-
tive target for multiple reasons. Of course, the appeal of OF-
DFT predates modern DFT, as witness the
Thomas-Fermi-Dirac12,13 and von Weizsäcker14 models.
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There has been considerable activity more recently. A review
with extensive references is given in Ref. 15. Other relevant
work is that of Carter and co-workers; a helpful review with
many references is Ref. 16. More recent developments in-
clude, for example, Refs. 17–22 as well as our own work
already cited.

Distinct from most other recent efforts, our approach is to
construct one-point, i.e., local, approximate KE functionals
specifically for MD computations. We insist on constraint-
based forms and parameters, that is, satisfaction of known
exact results for positivity, scaling, and the like. We are will-
ing, as needed, to simplify the search by requiring only that
the functional give adequate interatomic forces, not total en-
ergies �and certainly not KS band structures nor general lin-
ear response�.

To summarize basics and set notation, the Kohn-Sham23

kinetic energy Ts, the major contribution to T, is defined in
terms of the KS orbitals �Hartree atomic units unless other-
wise noted�:

Ts���i	i=1
N � = 


i=1

N � �i
��r��−

1

2
�2
�i�r�d3r �� torb�r�d3r .

�1�

Although Ts�0, torb is not necessarily greater than zero. It is
preferable, therefore, to use the equivalent form

ts � torb +
1

4
�2n , �2�

which is positive definite.24

The remainder, T−Ts, is included in the exchange-
correlation �XC� functional Exc�n�. Since successful Exc ap-
proximations assume this KS KE decomposition, we focus
on Ts. This approach also evades the formidable task associ-
ated with the full T�n� just mentioned.

For Ts�n� an explicit functional of n, the DFT total energy
functional is orbital-free:

EOF-DFT�n� = Ts�n� + ENe�n� + EH�n� + Exc�n� + ENN. �3�

Here ENe�n� is the nuclear-electron interaction energy func-
tional, EH�n� is the Hartree functional �classical electron-
electron repulsion�, and ENN is the internuclear repulsion.
Then the variational principle gives the single Euler equation

�Ts�n�
�n�r�

+ vKS��n�;r� = � , �4�

where � is the Lagrange multiplier for density normalization
�n�r�d3r=N at the nuclear configuration R1 ,R2 , . . ., and
vKS=��ENe+EH+Exc� /�n. The force on nucleus I at RI is
simply

FI = − �RI
EOF-DFT = − �RI

ENN −� n�r��RI
vNed

3r

−� ��Ts�n�
�n�r�

+ vKS��n�;r���RI
n�r�d3r . �5�

The third term in Eq. �5� shows that the biggest error in the
calculated force will come from the gradient of the approxi-

mate Ts�n� functional, because the kinetic energy is an order
of magnitude larger than the magnitude of Exc �which also
must be approximated in practice�. As will be discussed,
when the development of approximate KE functionals fo-
cuses on forces, it is convenient to use Eq. �5� with number
density n�r� from a conventional KS calculation �with a spe-
cific approximate Exc� as input.

In constructing approximate functionals it is quite com-
mon to begin with the Thomas-Fermi �TF� functional,12,13

TTF�n� = c0� n5/3�r�d3r �� t0�r�d3r ,

c0 =
3

10
�3�2�2/3. �6�

By itself, the TF functional is not an acceptable approxima-
tion, because of, for example, the Teller nonbinding
theorem.25 A more productive route for our purposes is to
decompose Ts�n� into the von Weizsäcker energy TW,14 plus
a non-negative remainder, known as the Pauli term T�,26–29

Ts�n� = TW�n� + T� �n�, T� �n� � 0, �7�

with

TW�n� =
1

8
� ��n�r��2

n�r�
d3r �� tW�n�r��d3r . �8�

As analyzed in detail below, the non-negativity of T� and
t� �r� defined by

T� =� t� �r�d3r ,

t� ª ts − �n
1

2
�2�n �9�

is a crucial but not sufficient condition for determining a
realistic OF-KE approximation.7 Details of the consequences
of enforcing that condition are a focus of this paper.

III. GGA-TYPE KE FUNCTIONALS AND THEIR
LIMITATIONS

A. Basic structure

Pursuit of single-point approximations for ts�r�
= tW�n�r� ,�n�r��+ t� �n�r� ,�n�r� , . . .� stimulates consider-
ation of a counterpart to the generalized gradient approxima-
tion �GGA� for XC,30 namely,

Ts
GGA�n� = c0� n5/3�r�Ft�s�r��d3r . �10�

Here s is a dimensionless reduced density gradient

s �
��n�
2nkF

, kF � �3�2n�1/3. �11�

Ft is a kinetic energy enhancement factor which goes to unity
for uniform density. Equation �10� is motivated in part by the

KARASIEV et al. PHYSICAL REVIEW B 80, 245120 �2009�

245120-2



conjointness conjecture,31 which posits that Ft�s�	Fx�s�,
where Fx is the enhancement factor in GGA exchange. We
showed previously that this relationship cannot hold strictly,7

but the form is suggestive and useful.
For connection with T��0, we re-express TW in a form

parallel with Eq. �10�. From Eqs. �7�, �8�, and �11�,

TW�n� = c0� n5/3�r�
5

3
s2�r�d3r , �12�

Ts
GGA�n� = TW�n� + c0� n5/3�r�F� �s�r��d3r , �13�

where

F� �s� = Ft�s� −
5

3
s2. �14�

The final term of Eq. �13� thus is a formal representation of
the GGA Pauli term T�

GGA. Note that the form of Eq. �13�
automatically preserves proper uniform scaling of Ts �see
Ref. 32�:

Ts�n
� = 
2Ts�n� ,

n
�r� ª 
3n�
r� . �15�

Constraints that must be satisfied by the enhancement factors
associated with any satisfactory GGA KE functional include

t� ��n�;r� � 0, �16�

as well as29,33,34

v���n�;r� = �T� �n�/�n�r� � 0, ∀ r . �17�

The quantity v� is known as the Pauli potential. Constraint
Eq. �16� implies the non-negativity of the GGA enhancement
factor, F� �s�r���0.

For a slowly varying density that is not itself small, we
have s�0, and it is appropriate to write Ts as a gradient
expansion:35

Ts�n� = TTF�n� +
1

9
TW�n� + higher-order terms. �18�

Truncation at second order in s gives the second-order gra-
dient approximation �SGA�, with the SGA enhancement
factor30

Ft
SGA�s� = 1 +

1

9
·

5

3
s2 = 1 +

5

27
s2 �19�

or

F�
SGA�s� = 1 −

40

27
s2. �20�

These forms should be exhibited by the exact functional in
the limit of small density variation. �Though there are
s→� constraints,11 we have not used them so far.�

For GGA functionals, v�, Eq. �17�, can be written36,37 as

�T�
GGA

�n�r�
=

�t� �n�r�,�n�r��
�n�r�

− � ·
�t� �n�r�,�n�r��

���n�r��
. �21�

After some tedium, one finds

v�
GGA =

5

3
c0n2/3F� + c0n5/3�F�

�s
� �s

�n
−

5

3

�n

n
·

�s

��n
− � ·

�s

��n
�

− c0n5/3�2F�

�s2 ��s ·
�s

��n

 . �22�

�The last line was omitted in Eq. �34� of Ref. 7 but included
in the actual numerical work.� A somewhat cleaner expres-
sion that also facilitates understanding the extension pre-
sented below comes from shifting to the variable s2 and de-
fining both the reduced Laplacian density p,

p �
�2n

�2kF�2n
=

�2n

4�3�2�2/3n5/3 , �23�

and one of the various possible dimensionless fourth-order
derivatives q,

q �
�n · ���n� · �n

�2kF�4n3 =
�n · ���n� · �n

16�3�2�4/3n13/3 . �24�

�Note that our s2, p correspond to p, q, respectively, in Ref.
19.� Then Eq. �22� becomes

v�
GGA�s2� = c0n2/3�5

3
F� �s2� − �2

3
s2 + 2p
 �F�

��s2�

+ �16

3
s4 − 4q
 �2F�

��s2�2� . �25�

See Appendix A for details.

B. Singularities

Near a point nucleus of charge Z at the origin, the number
density behaves to first order in r as

n�r� � �1 − 2Z�r�� + O��r�2� , �26�

as required by Kato’s cusp condition.38–42 Sufficiently close
to a nucleus, therefore, n�r� behaves as a hydrogenlike
1s-electron density

nH�r� � exp�− 2Z�r�� . �27�

That is, the variation in n��r� /n�r� is equal for these densities
sufficiently close to the nucleus, hence, the form in Eq. �27�
is a reasonable near-nucleus approximation.43 Consequences
of differences in the higher-order terms in the respective Tay-
lor expansions of actual and hydrogenic 1s densities are dis-
cussed in Sec. IV A. See Refs. 29 and 44 for related discus-
sions.

For n�r� of the form of Eq. �27� at r=0, s and q remain
finite while p→−4Z / �2kF�2r. In this case, Eq. �25� becomes
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v�
GGA�r → 0� =

3Z

5r

�F�
GGA

��s2�
+ nonsingular terms. �28�

If s2 is sufficiently small that it is a good approximation to
write F�

GGA�1+as2 �note that this is exactly the form of
F�

SGA�, Eq. �28� simplifies to

v�
GGA�r → 0� =

3aZ

5r
+ nonsingular terms, �29�

in which case v�
GGA tends to infinity at the nuclei with the

same sign as the GGA parameter a. The small values of s2 at
the nuclei make this a general phenomenon. �Near typical
nuclei �r→0�, numerical experience shows that s2�0.15, so
that the small-s2 behavior of any F��s2� of GGA form is
relevant there.�

Equation �29� shows that purely GGA Pauli potentials
have singularities in the vicinity of nuclear sites. In contrast,
calculations using KS quantities as inputs show that the exact
Pauli potential is finite at the nuclei �see, for example, Ref.
27 as well as Fig. 2�. Moreover, the positivity requirement
for v� will certainly be violated near the nuclei both for F�

SGA

and for any GGA form with a�0.

C. Positivity: tests and enforcement

To assess these positivity constraints, we tested six pub-
lished KE functionals45–50 that either are strictly conjoint or
are based closely on conjointness. The test used the diatomic
molecule SiO, an important reference species for us. With
local-density approximation �LDA� XC, we did a conven-
tional orbital-dependent KS calculation as a function of bond
length �details are in Appendix B�. At each bond length, the
converged KS density was used as input to the orbital-free
E�n� corresponding to one of the six Ts�n� approximations.
None of the six gave a stable SiO molecule. All six produced
a
0 in Eq. �29�; hence, all six have nontrivial violations of
v� positivity. In fact, all the effective enhancement factors
are very close to that of the SGA, F��s�=1–40 /27s2. Details
are in Refs. 7 and 8. Because of the constraint violation,
conjointness can at most be a guide.

We enforced positivity of v�
GGA by particular parametriza-

tion of two Ft�s� forms. One is based on the Perdew, Burke,
and Ernzerhof �PBE� �Ref. 46� GGA XC form

Ft
PBE��s� = 1 + 


i=1

�−1

Ci� s2

1 + a1s2�i

, � = 2,3,4,

Ft
exp 4�s� = C1�1 − e−a1s2

� + C2�1 − e−a2s4
� . �30�

Our PBE2 form is identical �but with different parameters� to
the form used by Tran and Wesolowski.45 Our PBE3 corre-
sponds to the form introduced by Adamo and Barone,47 but,
again, with different parameters. Quite similar forms also
were explored by King and Handy51 in the context of directly
fitting a KS kinetic potential vs=�Ts /�n to conventional KS
eigenvalues and orbitals; see Eq. �34� below.

We fitted the parameters in the enhancement factors, Eq.
�30�, to match the conventional KS internuclear forces for
various nuclear configurations of a three-molecule training

set: SiO, H4SiO4, and H6Si2O7. With conventional KS den-
sities as input, we found semiquantitative agreement with the
conventional KS calculations for single bond stretching in
H4SiO4, H6Si2O7, H2O, CO, and N2. All had energy minima
within 5%–20% of the conventional KS equilibrium bond-
length values. The latter two molecules were particularly en-
couraging, since no data on C or N was included in the
parametrization. Details, including parameter values, are in
Ref. 7.

D. Analysis of fitted functional behavior

Despite this progress, there is a problem. Although the
PBE� and exp4 forms give Pauli potentials that are every-
where positive, yielding a�0 in Eq. �29�, they are singular
at the nuclei, in contrast to the negative singularities of pre-
viously published forms. For clarity about the developments
which follow, observe that these nuclear-site singularities oc-
cur in v�, hence, are distinct from the intrinsic nuclear-site
singularity of the von Weizsäcker potential, which by opera-
tion on Eq. �8� can be shown to be

vW �
�TW�n�
�n�r�

=
1

8
� ��n�2

n2 −
2�2n

n
� . �31�

The intrinsic singularity of vW near a nucleus follows from
Eq. �26� as

vW = −
2Z

r
. �32�

Insight regarding the behavior of our modified-conjoint func-
tionals can be gained from consideration of the energy den-
sity dT�

approx�s� /ds as a function of s for various functionals
indicated by the generic superscript “approx.” This quantity
comes from differentiation of the integrated contribution
T�

approx�s� of the region s�r�
s to the kinetic energy:

T�
approx�s� � �

s�r�
s

t�
approx��n�;r�d3r

= �
0

s

ds� t�
approx��n�;r�� �s − s�r��d3r . �33�

Figure 1 shows dT�
approx�s� /ds for the SiO molecule at bond

length R=1.926 Å �slightly stretched�. Values are shown for
the PBE2 parametrization �that respects positivity�, the Tran-
Wesolowski parametrization of the same form �PBE-TW�,
and for the exact orbital-dependent KS Pauli term calculated
from29

t�
KS = ts − �1

8

��n�2

n
−

1

4
�2n
 , �34�

where t� and ts are defined in Eqs. �9� and �2�, respectively.
Figure 1 also shows that both approximate functionals

closely resemble the exact KS kernel for 0.24�s�0.38. But
both of them have a much larger second peak around s
�0.5. In contrast, the exact functional actually has a long
low region before a second peak at s�0.9. PBE2 mimics the
true second peak via a too-strong third peak while the con-
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ventional GGA PBE-TW functional has a spurious minimum
at this point. Moreover, the PBE-TW Pauli term goes nega-
tive for all s�0.82. In addition, Fig. 1 shows that the KS
kinetic energy is nearly totally determined by the behavior
of F� over a relatively small range of s, approximately
0.26
s
1.30 for the SiO diatomic. The asymptotic regions
�s→0 and s→�� do not play a significant role. The range
0.26
s
0.9 has the highest weight of contribution �the
highest differential contribution�. As an aside, we surmise
that PBE2 overestimates the KE because it was fitted purely
to forces without regard to total energies.

Figures 2–4 provide comparisons of the reference t�
KS,

v�
KS, and F�

KS �where F�
KS� t�

KS /c0n5/3� with the correspond-
ing quantities for the PBE-TW and PBE2 approximations.
The values are along the internuclear axis of the SiO mol-
ecule with internuclear separation 1.926 Å. The KS Pauli
potential was calculated using the exact orbital-dependent
expression

v� ��n�;r� =
t���n�;r�

n�r�
+ 


i=1

N

��N − �i�
��i�r��2

n�r�
, �35�

where �i and �i are the occupied KS orbitals and eigenval-
ues, respectively. Equation �35� is obtained in a way similar
to that used in Ref. 29; see Ref. 8.

In Fig. 2, all three KS quantities, t�
KS, v�

KS, and F�
KS are

everywhere non-negative, as they must be. Observe that v�
KS

is finite at the nuclei and has local maxima at positions close
to the intershell minima of the electronic density.

In contrast, the energy density of the PBE-TW Pauli term
and corresponding enhancement factor have negative peaks
in the intershell regions, violations of the non-negativity con-
straint for t�. However, addition to t�

approx of any multiple of a
Laplacian term �2n would change only the local behavior

without altering the value of T�
approx, so the PBE-TW misbe-

havior might be resolved by such an addition. See discussion
below. Figure 3 also shows that v� for the PBE-TW func-
tional has very sharp negative peaks exactly at the nuclear
positions in accord with Eq. �29�.

Figure 4 shows that the modified-conjoint PBE2 v� re-
spects the positivity constraint everywhere. Internuclear
forces in the attractive region are described at least qualita-
tively correctly as a result. The PBE2 potential is still diver-
gent at the nuclei in accordance with Eq. �29�.

There are two small computational side issues. First, the
absence of nuclear-site singularities in the computed correct
Pauli potentials v�

KS might be argued to occur because the
computed density does not have precisely the proper nuclear-
site cusp, i.e., does not strictly obey Eq. �26�. However, our
numerical results are consistent with those in Ref. 27. Those
authors used numerical orbitals52 which presumably satisfied
the cusp condition approximately. More importantly, if a spe-
cific numerical technique gives a KS density and associated
KS ts that produce a nonsingular v�, then an approximate v�

evaluated with the same density should not introduce singu-
larities. Second, the reader may notice that Fig. 4 shows
small negative values for t� far from the bonding region of
the molecule. This behavior seems to arise from numerical
instability associated with fitting for small values of the den-
sity. In any event, those negative values make no appreciable
contribution to the kinetic energy.

Finally, an insight to the harm of excess positivity of v�

can be seen by examining the dependence of T� �n� upon v�.
From a known virial relation29 we have

T� �n� =
1

2
� v� ��n�;r��3 + r · ��n�r�d3r . �36�

Any spurious singularities of v�
approx at the nuclei clearly will

cause special problems in overweighting the integrand.
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FIG. 1. Energy density contributions to the Pauli term T� as a
function of s presented as values of dT� �s� /ds from Eq. �33�;
shown are conventional Kohn-Sham dT�

KS�s� /ds �the reference�, our
PBE2 functional, and the older PBE-TW GGA functional. Data are
for the SiO diatomic molecule at bond length 1.926 Å and are
based on the density from fully numerical KS-LDA computations.
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FIG. 2. �Color online� Conventional �reference� KS values for
electronic density �scaled by the factor 4���z�−R /2�2, with R the
internuclear distance�, Pauli term t�, Pauli potential v�, and en-
hancement factor F�, calculated for points on the internuclear axis
using KS-LDA fully numerical orbitals for the SiO molecule; Si at
�0,0 ,−0.963� Å, O at �0,0 ,+0.963� Å.
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IV. BEYOND GGA-TYPE FUNCTIONALS

The preceding analysis makes clear the need for more
flexible functionals than the forms of Eq. �30�. In particular,
nuclear-site divergences of v� are unavoidable for all purely
GGA-type functionals, e.g., GGA, GGA-conjoint, and
modified-conjoint KE functionals; recall Eqs. �28� and �29�.
Additional variables and constraints upon them are required
to eliminate the singularities.

A. Reduced derivatives of the density

Consider again the gradient expansion of Ts�n�, Eq. �18�
�see Refs. 35 and 53–55 for details�, recast as

Ts�n� =� �t0��n�;r� + t2��n�;r� + t4��n�;r� + ¯	d3r .

�37�

Here t0 is as in Eq. �6�, t2= �1 /9�tW, and
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FIG. 3. �Color online� As in Fig. 2 for the PBE-TW conjoint approximation. Lower left panel: region near Si center; lower right panel:
region near O center.
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t4��n�;r� =
1

540�3�2�2/3n5/3�r����2n�r�
n5/3�r�


2

−
9

8
� �n�r�

n4/3�r�

2��2n�r�

n5/3�r�

 +

1

3
� �n�r�

n4/3�r�

4� .

�38�

The sixth-order term, dependent upon n, ��n�, �2n, ���2n�,
and �4n, is given in Ref. 53.

Once again, in a finite system �e.g., molecule�, a
Laplacian-dependent term �2n affects only the local behav-
ior of the kinetic energy density. Arguments have been ad-
vanced for and against including such Laplacian dependence
in the KE density functional; for example, see Refs. 24, 51,
55, and 56. Recently Perdew and Constantin19 presented a
KE functional that depends on �2n via a modified fourth-
order gradient expansion. Though not stated as such, their
functional obeys the decomposition of Eq. �7�. It is intended
to be universal �or at least very broadly applicable�, whereas
we are focused on simpler functionals that may require pa-
rametrization to families of systems. The Perdew-Constantin
form involves a rather complicated functional interpolation
between the gradient expansion and the von Weizsäcker
functional. They did not discuss the corresponding potential
v� nor Born-Oppenheimer forces and they characterized the
performance of their functional for the energetics of small
molecule dissociation as “still not accurate enough for
chemical applications.” So we proceed rather differently.

Rearrange the foregoing gradient expansion into TW+T�

form �recall Eq. �7��:

T� �n� =� �c0n5/3�r��1 −
40

27
s2
 + t4 + t6 + ¯�d3r

=� �t0�1 −
5

3
s2
 + t0

5

27
s2 + t4 + t6 + ¯�d3r

�� �t�
�0���n�;r� + t�

�2���n�;r� + t�
�4���n�;r� + ¯�d3r ,

�39�

where

t�
�0���n�;r� = t0��n�;r��1 −

5

3
s2� , �40�

t�
�2���n�;r� = t0��n�;r�� 5

27
s2� , �41�

and

t�
�4���n�;r� = t0��n�;r�� 8

81
�p2 −

9

8
s2p +

1

3
s4
� . �42�

Each term, Eqs. �40�–�42�, of Eq. �39� can be put straight-
forwardly into a GGA-like form:

t�
�2i���n�;r� = t0��n�;r�F�

�2i��s,p, . . .� , �43�

where s, p are as in Eqs. �11� and �23�, respectively. The first
two terms of the expansion yield the SGA enhancement fac-
tor already discussed,

F�
SGA � F�

�0� + F�
�2� = 1 + a2s2, �44�

with a2=−40 /27. The fourth-order �in highest power of s�
term is

F�
�4� = a4s4 + b2p2 + c21s

2p , �45�

with coefficients a4=8 /243, b2=8 /81, and c21=−1 /9.
Rather than retain those values of a2, a4, b2, and c21, we

instead treat them as parameters and seek values or relation-
ships among them which would yield a nonsingular v�

through a given order. �Corresponding improvement of
Thomas-Fermi theory by imposition of the nuclear cusp con-
dition was introduced in Ref. 57.�

Functional differentiation of each term in Eq. �39� gives
the formal gradient expansion v�=v�

�0�+v�
�2�+v�

�4�+¯, where
F�

�2i� �shown below with its arguments suppressed for clarity�
is a function of s2, p, and in principle, higher derivatives of
n�r�:

v�
�2i��r� = t0��n�;r�

�� 5

3n�r�
F�

�2i� +
�F�

�2i�

��s2�
��s2�
�n�r�

+
�F�

�2i�

�p

�p

�n�r�
+ ¯�

− � · �t0��n�;r�
�F�

�2i�

��s2�
��s2�

��n�r��
+ �2�t0��n�;r�

�F�
�2i�

�p

�p

��2n�r�� + ¯ . �46�

The ellipses in Eq. �46� correspond to additional terms that
are needed only if F�

�2i� depends upon derivatives other than s
and p.

After manipulation �see Appendix A�, one obtains the po-
tentials corresponding to the enhancement factors in Eqs.
�44� and �45�:

v�
SGA = c0n2/3�5

3
+ a2s2 − 2a2p� , �47�

v�
�4� = c0n2/3��11a4 +

88

9
c21
s4 − �5b2 + 2c21�p2

− �4a4 −
80

9
b2
s2p − �8a4 +

32

3
c21
q −

20

3
b2q�

+ 2b2q� + 2c21q�� . �48�

Here q is as in Eq. �24� and q�, q�, and q� are other dimen-
sionless fourth-order reduced density derivatives defined as

q� �
�n · ��2n

�2kF�4n2 =
�n · ��2n

16�3�2�4/3n10/3 , �49�
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q� �
�4n

�2kF�4n
=

�4n

16�3�2�4/3n7/3 , �50�

q� �
��n:��n

�2kF�4n2 =
��n:��n

16�3�2�4/3n10/3 . �51�

The operation denoted by the colon in the numerators of q�
is A :B�
ijAijBji.

At Eq. �28� we have already pointed out that an enhance-
ment factor of SGA form, specifically, that of Eq. �44�, pro-
duces a Pauli potential

v�
SGA�r� = v�

�0��r� + v�
�2��r� =

3

5

Za2

r
+ nonsingular terms.

�52�

This exhibits the 1 /r SGA Pauli potential nuclear singularity
already discussed; we return to this point in a moment.

For the fourth-order enhancement factor, Eq. �45�, we
again note that s and q are nonsingular near the nucleus,
while

lim
r→0

s2�r� = Z2/�3�2n�0��2/3. �53�

With a density of the form of Eq. �27�, Eq. �48� thus gives
the near-nucleus behavior of the fourth-order potential as

v�
�4��r� =

c0

16�9�4n�r��2/3�−
16Z2

3r2 �5b2 + 3c21� +
32Z3

9r
�18a4

+ 17b2 + 18c21�� + nonsingular terms. �54�

The singularities in 1 /r2 and 1 /r can be removed by requir-
ing that the numerators of the first two terms of Eq. �54� both
vanish. This is equivalent to imposition of constraints on the
coefficients, namely,

c21 = −
5

3
b2,

a4 =
13

18
b2. �55�

In the spirit of the GGA, we are led to defining a fourth-order
reduced density derivative �RDD� as

�4 = s4 +
18

13
p2 −

30

13
s2p . �56�

This RDD with Eq. �45� gives an enhancement factor

F�
�4���4� = a4�4, �57�

which yields a Pauli potential with finite values at point nu-
clei. Clearly it is not the only �4-dependent enhancement
factor with that property. So, we seek F�

�4���4� functional
forms which are more general than Eq. �57� and which give
a positive-definite nonsingular v�. A few examples were
given in Ref. 8.

At this point, it is prudent to consider how many terms in
the Taylor series expansion of the density Eq. �27� are rel-

evant for the cancellation of singularities in Eq. �54�. The
answer is four terms: n�r�	1−2Zr+2Z2r2− �4 /3�Z3r3. That
is, the singularities will reappear for a density of the form of
Eq. �26� if the second- and third-order terms differ from
those defined by a hydrogenlike density expansion, e.g., Eq.
�27�. Thus, the foregoing cancellation fails for a density with
power series expansion n�r�	1−2Zr− �4 /3�Z3r3+¯. This
fact will limit applications of simple �4-based KE functionals
to those densities which have precisely hydrogenlike behav-
ior up to fourth order.

It is necessary, therefore, to consider other candidates for
RDD variables which would provide cancellation of singu-
larities for the density Eq. �26� independently of hydrogenic
higher-order terms in the Taylor series expansion of the den-
sity. The observation that �4�O��4� suggests that the effec-
tive or operational order of � in such a candidate variable
should be reduced to second order. This in turn suggests a
candidate variable, still based on the fourth-order gradient
expansion Eq. �42�, namely,

F�
�4−2� = �a4s4 + b2p2 + c21s

2p �58�

�compare Eq. �45��. Now consider a density of the form of
Eq. �26� but with arbitrary first- and higher-order near-
nucleus expansion coefficients,

n�r� � �1 + C1r + C2r2 + C3r3� . �59�

Following the same lines as those used to reach Eq. �54�, one
finds

v�
�4−2��r� �

c21

�b2

1

r
+ nonsingular terms. �60�

The singular term would be eliminated by the choice c21=0.
The cancellation is universal in that it does not depend on the
density expansion coefficients, Ci �while the singular term
prefactor and nonsingular terms do, of course, depend on
those expansion coefficients�. Hence a candidate RDD vari-
able �denoted as �̃4� which provides cancellation of singular
terms in the Pauli potential could be defined as

�̃4 = �s4 + b2p2, b2 � 0. �61�

Note that this form is manifestly positive.
This RDD can be used to construct a variety of enhance-

ment factors to replace Eq. �45� for the fourth-order approxi-
mation to the Pauli term, for example, F���̃4�=a4�̃4. This
simplest enhancement factor corresponds to a Pauli potential
with finite values at point nuclei but clearly it is not the only
�̃4-dependent one with that property. Any linear combination
of nonsingular enhancement factors �including the simple
F�=1� also will be nonsingular. A combination of two PBE-
like forms �see Eq. �71� below� is also nonsingular, as can be
checked analytically for any density with near-nucleus be-
havior defined by Eq. �59�, hence, also Eqs. �26� and �27�.

There are, of course, �̃4-dependent functionals that yield a
divergent potential, e.g.,

F� ��̃4� = �̃4
2 �62�

so one must be cautious.
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Regarding the second-order forms, Eq. �52� shows that,
short of complete removal of the s2 term from F�

SGA, we
cannot cure the singularity in v�

SGA. There is no direct anal-
ogy to the removal of singularities in v�

�4� just discussed.
Instead, in parallel with Eq. �56� or Eq. �61�, we introduce a
second-order RDD,

�2 = s2 + b1p , �63�

with b1 to be determined. Then, in analogy with a PBE-type
enhancement factor, we can define an enhancement factor
dependent only on second-order variables as

F�
�2���2� =

�2

1 + ��2
. �64�

For it, the near-nucleus �small r� behavior of the Pauli po-
tential is

v�
�2��r� = C1

�2� �1 + C2
�2�b1��

b1�2 + O�r� , �65�

with constants Ci
�2��0 which depend on the specific density

behavior being handled.
The RDDs considered thus far are combinations of pow-

ers of s and p which ensure cancellation of nuclear cusp
divergences in v�. Thus, we define a class of approximate KE
functionals, the reduced derivative approximation �RDA�
functionals, as those with enhancement factors depending on
the RDDs,

Ts
RDA�n� � TW�n� +� t0��n�;r�F� „�2�r�,�̃4�r�…d3r ,

�66�

�t0�n� from Eq. �6�� with nondivergent Pauli potentials as a
consequence of constraints imposed on the coefficients in the
RDDs. This route of development of KE functionals is under
active investigation; see below.

For insight, Fig. 5 shows the behavior of the RDD �̃4
along the SiO internuclear axis for four values of b2. The
behavior in the vicinity of the Si atom is shown. Both the s
and p variables have four maxima which lie close to the
intershell minima in the density. Increasing the value of b2
increases the height of the corresponding maxima for �̃4
RDD �because the contributions from the p maxima in-
crease�. Behavior of the RDD �2 is defined by a linear com-
bination of the s and p variables.

One of the peculiarities is that the reduced density Laplac-
ian p is divergent at the nucleus and, as a consequence, �2
and �̃4 itself also are divergent, even though it generates a
nondivergent v�. This divergence will not affect the KE en-
hancement factors provided that lim�2→� F� ��2�=constant
and lim�̃4→� F� ��̃4�=constant. One of the advantages of the
�̃4 variable is its positiveness everywhere �by definition�.

Consider near-nucleus behavior in a bit more detail. In
that region, the electron-nuclear cusp condition38–42 means
that the density will have hydrogenic form �at least to first
order�; recall Eq. �27�. For such an N-electron density, one
can form N orthonormal isodensity orbitals,58

�m�r� =
Am

N1/2n1/2�r�exp igm�r� . �67�

Orthogonality of the �m requires

N−1AmAn� drn�r�exp i�gm�r� − gn�r�� = �m,n. �68�

For n�r� of the form Eq. �27�, the orthogonal functions
exp igm�r� have an exponential weight factor, hence, must be
proportional to the generalized Laguerre polynomials of de-
gree 2 �from the Jacobian r2� multiplied by suitable spherical
harmonics. See, for example, Ref. 59. While in principle one
could make any arbitrary unitary transformation �but not lo-
cal gauge transformation� of these N isodensity orbitals, that
would not change the KE. So we can put aside such a trans-
formation. Then, in the limit that one approaches the nucleus,
the dominant orbital is the �=0 which is either singly or
doubly occupied; hence, the KE density is arbitrarily close to
tW in that region. Therefore T� is arbitrarily close to zero in
that same region. A sufficient condition for this behavior is
that F� also be arbitrarily close to zero in that region. For T�

KS

this is essentially what happens, as shown in Fig. 6. It gives
a blown-up view of the region around the oxygen nucleus for
the SiO molecule shown in Fig. 2. At the nucleus,
F�

KS�0.004. Thus, in that region Ft�FW. Numerically, for
the systems we have tested, we find s�0.37→0.38 in that
region, so we expect

Ft�r → 0� = FW�r → 0� =
5

3
s2�r → 0� � 0.23. �69�

Asymptotically, the density of an isolated system decays
to zero exponentially and the inhomogeneity variable di-
verges: s→� as r→�. Because of this asymptotic hydro-
genic character, it is generally supposed that the von
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FIG. 5. �Color online� The fourth-order �̃4 reduced density de-
rivative for different values of b2 along the internuclear axis z for
the SiO diatomic molecule near the Si atom: Si at
�0,0 ,−0.963� Å; O at �0,0 ,+0.963� Å. Variables s and p are
shown for comparison.
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Weizsäcker functional again is a reasonable approximation.11

This behavior is the case for systems for which the tail re-
gion has the one-particle reduced density matrix dominated
by a single valence orbital 
�r ,r��= f i�i�r��i

��r�� occupied
by one or two electrons. But that is not the case for all
systems at large but finite distances. For example, numerical
calculations for the SiO molecule show that two valence or-
bitals, 7� and 6�, have similar magnitude in the
tail region �see Fig. 7�. As a consequence 
�r ,r��
=2�6��r��6�

� �r��+2�7��r��7�
� �r�� in the tail region �at least

near the internuclear axis�. Hence, the von Weizsäcker KE
functional is not an appropriate approximation in the large
but finite-distance part of the tail region of that molecule.
The Pauli term enhancement factor, in fact, is not small
there, but has growing values �recall Fig. 2�.

B. Parametrization of a RDA functional

In addition to the positive singularities, another limitation
of our earlier modified-conjoint-type KE functionals was the
inability to parametrize them to provide both forces and total
energies simultaneously.7 Given the emphasis on MD simu-
lations, parametrization to the forces was the priority. With
the spurious repulsive singularities removed from RDD func-
tionals, the question arises whether total energy parametriza-
tion can be used and, if so, if it is beneficial. The usual
energy fitting criterion is to minimize

�E = 

i=1

m

�Ei
KS − Ei

OF-DFT�2 �70�

over systems �e.g., atoms and molecules� and configurations
�e.g., diatomic molecule bond length� indexed generically
here by i. When the parameter adjustment is done for fixed-
density inputs �i.e., conventional KS densities as inputs�, this
total energy optimization is equivalent to optimization of the
Ts functional. We did this for determination of the
empirical parameters for the new RDA-type functionals
F�

RDA=F� ��2 , �̃4�.
Since F�=1 �or any constant in general� also yields a

nonsingular Pauli potential, we can form �2, �̃4-dependent
enhancement factors which resemble GGA forms and
thereby enable connection with the modified-conjoint GGA
functionals discussed already. One form which we have be-
gun exploring �see below� is

F�
m0���	� = A0 + A1� �̃4a

1 + �1�̃4a

i

+ A2� �̃4b

1 + �2�̃4b

 j

+ A3� �2c

1 + �3�2c

k

. �71�

Ai and �i are parameters to be determined, along with the
constants a, b, and c which appear in the definition of
the �̃4 and �2 variables; see Eqs. �61� and �63�. Even
this simple form has two desirable properties: �i� the
corresponding v� is finite for densities with the near-nucleus
behavior defined by Eq. �59�, hence, also Eq. �26� or
Eq. �27� �this has been checked by explicit analytical
calculation�; �ii� the divergences of �̃4a, �̃4b, and �2
near the nucleus �see Fig. 5� cancel in Eq. �71�
�lim��̃4a,�̃4a,�2c	→� F�

m0���	� = A0 + A1 /�1
i + A2 /�2

j + A3 /�3
k�.

Positivity of F�
m0 depends on the specific parameters of the

functional, hence, must be checked for each case.
After limited exploration, we used i=2, j=4, and k=1.

Again because the motivating materials problem was
brittle fracture in the presence of water, our choice of
training set M has a focus on Si and O. In an attempt to gain
a bit of generality, we used two molecules with Si-O bonds
and two closed shell atoms M = �H6Si2O7,H4SiO4,Be,Ne	,
with a set of six bond lengths for each molecule. In detail,
for the H6Si2O7 one of the central Si-O bond lengths was
varied: R�Si1-O1�= �1.21,1.41,1.61,1.91,2.21,2.81	 Å. For
H4SiO4, the deformation was in Td mode, that is,
all four Si-O bonds were changed identically: R�Si-Oi�
= �1.237,1.437,1.637,1.937,2.237,2.437	 Å. KS-LDA den-
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FIG. 6. �Color online� Blow-up of data from Fig. 2 for the
region immediately around the O atom. Notation the same.
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sities and energies were the inputs �again see Appendix B for
computational details�. Minimization of the target function
defined by Eq. �70� gave A0=0.506 16, A1=3.041 21,
A2=−0.345 67, A3=−1.897 38, �1=1.296 91, �2=0.561 84,
�3=0.219 44, and a=46.476 62, b=18.806 58, and
c=−0.903 46.

The KE functional defined by Eq. �71� does not satisfy
several of the exact constraints. A simple check shows that
F�

m0���2 , �̃4	� unfortunately is not positive for all values of �2
and for all positive values of �̃4 �recall that �̃4 is positive by
definition�. Moreover, it does not recover the constant den-
sity limit nor is its F� contribution to Ft small at the nucleus
�recall discussion at the end of preceding section�. These
deficiencies illustrate the challenge in finding the universal
functional. A pressing question is which constraints should
be placed at higher priority than others when using a func-
tional form as simple as defined by Eq. �71�. One part of
exploring that issue is to study how well or poorly this func-
tional does despite the constraint violations.

Table I shows kinetic energies for the first row atoms
from conventional KS calculations and from approximate
OF-DFT functionals using the KS density as input. The
Thakkar empirical functional50 was chosen as an example of
a GGA KE functional. The Perdew-Constantin meta-GGA
�Ref. 19� “MGGA” was chosen because it, like our func-
tional, is based on quantities that are at fourth order in the
density gradient expansion. The mean absolute errors �MAE�
for the GGA and RDA-m0 functionals are of the same order
of magnitude, with the distinction that the GGA functional
underestimates the KE for the He, C, O, and F atoms,
whereas RDA-m0 overestimates. The underestimates may be
a sign of violation of N representability. We defer discussion
of that issue to Sec. V. The MAE for the MGGA functional is
50% larger than for RDA-m0 and 100% for GGA.

Table II displays kinetic energies for 14 molecules �four
of them with Si-O bonds� calculated at equilibrium geom-
etries with the conventional KS method and with the same

three approximate OF-DFT functionals �Thakkar-GGA,
MGGA, and RDA�, again using the KS density as input for
the approximate functional calculations. The results are a bit
surprising, because the MAE for the RDA-m0 functional is
about 2/3 the MAE for the GGA KE and less than 1/7 the
MAE for the MGGA. Given that the GGA is heavily param-
etrized compared to the small RDA-m0 training set �recall M
above; two molecules with Si-O bonds and two closed shell
atoms�, we had not expected to obtain such comparatively
good transferability to other systems.

Because the objective is a KE functional capable of pre-
dicting correct interatomic forces, an important aspect of any
functional is its behavior in the attractive regions of the po-
tential surface. Table III shows energy gradients for the mol-
ecules listed in Table II calculated at the stretched bond
length�s� for which the “exact” �i.e., reference� KS attractive
force has maximum magnitude. One and two bonds were
deformed in the water molecule �respectively denoted in the
table as H2O�1R� and H2O�2R��, while SiH4 and H4SiO4
were deformed in Td mode, and only one Si-O bond was
stretched in H4SiO and H6Si2O7.

The forces were calculated by a three-point centered
finite-difference formula. As found previously and summa-
rized above, the GGA functionals �again the Thakkar func-
tional is the GGA example� generally are incapable of pre-
dicting the correct sign �attraction� for the force. The only
molecules in Table III for which GGA predicts attraction are
H2, LiH, and SiH4. The MGGA functional behaves rather
similarly, with its predicted energy gradient having the
wrong sign in most cases. In contrast, for all of the table
entries, the RDA-m0 functional predicts the correct sign of
the gradient. In many cases �H2O�1R�, H2O�2R�, HF, CO,
BF, H4SiO, H4SiO4, and H6Si2O7� it yields values very close
to the reference KS results.

TABLE I. KS kinetic energy Ts values �in hartrees� for the first
ten atoms and differences �Ts

OF-DFT−Ts
KS� calculated using a GGA

�Thakkar�, MGGA, and RDA explicit semilocal approximate func-
tionals. LDA-KS densities for LDA equilibrium geometries �calcu-
lated as described in Appendix B� were used as input.

KS Thakkar MGGA RDA

H 0.469 0.009 0.019 0.019

He 2.774 −0.002 0.177 0.008

Li 7.250 0.041 0.257 0.180

Be 14.328 0.045 0.284 0.197

B 24.180 0.022 0.112 0.231

C 37.249 −0.005 0.186 0.276

N 53.966 0.140 0.393 0.282

O 74.177 −0.174 −0.013 0.189

F 98.670 −0.385 0.142 0.094

Ne 127.700 −0.237 0.567 −0.006

MAEa 0.106 0.215 0.148

aMAE=mean absolute error.

TABLE II. KS kinetic energy Ts values �in hartrees� for selected
molecules and differences �Ts

OF-DFT−Ts
KS� calculated using a GGA

�Thakkar�, MGGA, and RDA explicit semilocal approximate func-
tionals. LDA-KS densities for LDA equilibrium geometries �calcu-
lated as described in Appendix B� were used as input.

KS Thakkar MGGA RDA

H2 1.080 −0.022 0.103 0.036

LiH 7.784 0.021 0.296 0.161

H2O 75.502 −0.285 0.318 −0.188

HF 99.390 −0.353 0.329 −0.171

N2 108.062 −0.340 0.300 −0.182

LiF 106.183 −0.261 0.566 0.175

CO 111.832 −0.333 0.300 −0.179

BF 123.117 −0.273 0.456 0.080

NaF 260.097 −0.348 1.295 0.711

SiH4 290.282 0.084 3.112 0.574

SiO 362.441 −0.262 2.825 0.370

H4SiO 364.672 −0.163 3.338 0.421

H4SiO4 587.801 −0.860 4.133 −0.081

H6Si2O7 1100.227 −1.408 7.968 0.064

MAEa 0.358 1.810 0.242

aMAE=mean absolute error.
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Figure 8 shows the energy for the water molecule as a
function of the O-H1 bond length. Again, neither the GGA
nor the MGGA curve exhibits a minimum. This is a case for
which the new RDA-m0 functional behaves relatively
poorly. Though it yields a minimum, it is at too large a bond
length, while in the tail region the RDA-m0 curve goes al-
most flat. Thus, the structure predicted by RDA-m0 would be
more expanded than the correct value and the attractive force
in the tail region would be significantly underestimated. The
“DPK-refitted” curve corresponds to the DePristo and Kress
KE functional49 with all seven parameters refitted using ex-
actly the same fitting procedure as used for the RDA-m0
functional. The refitted DPK curve fails to yield a minimum
not only for the water molecule �not included in the fitting
set� but also for one of the molecules �H4SiO4� from the
fitting set. For the other fitting set molecule �H6Si2O7�, the
curve has unphysical behavior, namely, dual minima. From
this comparison, one deduces that the comparative success of
the RDA-m0 is not an artifact of the fitting procedure but
instead is a consequence of using the new RDD variables
which provide correct behavior of the Pauli potential in the
region near the nucleus. Of course the correct behavior of the
Pauli potential �non-negativeness, nonsingularity at nucleus�
is not a sufficient condition for good performance of a KE
functional.

Regarding the behavior of the MGGA, there is another
interesting aspect of finding energy minima. Very recently
Constantin and Ruzsinszky60 have presented binding ener-
gies as a function of bond length for the N2 molecule for
various orbital-free KE functionals including both TF and
MGGA. Both functionals overbind the molecule. Since TF
cannot bind a molecule on fundamental grounds �Teller’s

theorem25�, attention is drawn immediately to their proce-
dure. It appears plausible that the reason for their contradic-
tory outcome is the use of broken-symmetry Hartree-Fock
densities as input. There simply is no guarantee that use of
one of these functionals in the OF-DFT Euler equation, Eq.
�4�, would generate anything like the HF density. The con-
tradictory outcome confirms that, in fact, the self-consistent
OF-DFT density with one of these functionals would differ
in crucial ways. Reference 60 does, however, raise two
subtle and difficult issues, namely, that symmetry-broken so-
lutions do occur and that it is not obvious how to get such
solutions out of a full self-consistent OF-DFT treatment.

C. Atomic analysis of the RDA-m0 functional

For further analysis of the RDA-m0 functional, we calcu-
lated the Pauli potential near the nucleus �r→0� for the Be
atom using a simple H-like model density. A single-� Slater
orbital density with exponents �1s=3.6848 and �2s=0.9560
taken from Ref. 61 near r=0 has the following Taylor series
expansion: n�r��415.0479� �1−7.3971r�. The density
n�r�=415.0479�exp�−7.3971r� has the same slope at r=0.
It can be used as an approximate density for the Be atom
near r=0 to calculate the Pauli potential for the RDA-m0 Eq.
�71�, for the GGA �Ref. 45�, and for the PBE2 modified-
conjoint GGA functionals. Calculations were performed us-
ing our own MAPLE code. For RDA-m0, we find

v�
RDA-m0�r → 0� = 4.5355 � 105 − 1.2225 � 109r

+ 2.1912 � 1012r2 + O�r3� , �72�

while for the GGA the result is

TABLE III. Energy gradient �hartree /Å� calculated at point Rm

corresponding to the extremum of attractive force as calculated by
the KS method. Approximate OF-DFT energy gradients are ob-
tained by replacing Ts

KS by Ts
OF-DFT. LDA-KS densities for LDA

equilibrium geometries �calculated as described in Appendix B�
were used as input.

Rm

�Å� KS Thakkar MGGA RDA

H2 1.2671 0.164 0.029 0.112 0.017

LiH 2.455 0.046 0.016 0.037 0.028

H2O�1R� 1.3714 0.216 −0.050 −0.073 0.261

H2O�2R� 1.3714 0.416 −0.127 −0.163 0.454

HF 1.3334 0.232 −0.071 −0.003 0.192

N2 1.3986 0.576 −0.349 −0.819 0.212

LiF 2.0405 0.079 −0.019 −0.032 0.041

CO 1.4318 0.474 −0.248 −0.659 0.472

BF 1.6687 0.207 −0.037 −0.118 0.244

NaF 2.4284 0.067 −0.007 1.169 0.157

SiH4 1.9974 0.447 0.102 0.189 0.088

SiO 1.9261 0.278 −0.098 −0.281 0.125

H4SiO 2.057 0.162 −0.027 −0.086 0.113

H4SiO4 2.037 0.712 −0.278 −0.714 0.600

H6Si2O7 2.010 0.194 −0.022 −0.173 0.117

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9
R(O−H1) (Å)
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FIG. 8. Total energy as a function of the O-H1 distance for the
H2O molecule �with O-H2 kept at its equilibrium value� obtained
from a KS calculation with LDA XC and from approximate GGA
�Thakkar�, MGGA �Perdew-Constantin�, RDA-m0, and
DPK-refitted functionals. Refitted parameters of the DPK-refitted
functional are the following: a1=0.596 85, a2=16.623 26,
a3=17.200 09, a4=3.676 44, b1=−0.840 67�10−2, b2=12.689 84,
b3=−0.285 64�10−4. The LDA KS densities �calculated as de-
scribed in Appendix B� were used as input to the orbital-free
functionals.
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v�
GGA�r → 0� =

− 3.1961

r
+ 272.95 − 1319.1r

+ 3257.5r2 + O�r3� , �73�

and for the PBE2 modified-conjoint GGA

v�
PBE2�r → 0� =

0.742

r
+ 265.31 − 1319.6r + 3257.1r2 + O�r3� .

�74�

As expected, the first term in the GGA potential is divergent
and negative, while the PBE2 modified-conjoint GGA func-
tional has a divergent but positive first term. The numerical
coefficients for the rest of the terms are very close for the
GGA and PBE2 modified-conjoint GGA functionals. This
closeness is consistent with the analysis in Ref. 30.

Figure 9 shows the KS-LDA Pauli potential for the model
Be atom. The value of the potential at the nucleus is approxi-
mately 3.5 hartrees. The RDA-m0 potential has a finite �and
positive� value at nucleus, but it is a strong overestimate,
hence, cannot be displayed on the scale of the figure. Further
comparison shows that the slope of the RDA-m0 Pauli po-
tential at the nucleus has a large negative value, whereas it
should be very close to zero �see Fig. 9�. To complete the
study, three enhancement factors, KS, GGA, and RDA-m0,
are shown in the same figure. Again, as was seen in Fig. 3 for
the SiO molecule, there is an important region where F�

GGA is
negative. The RDA-m0 enhancement factor goes negative in
a small region near the nucleus and in the tail region. The
maximum of the KS enhancement factor near r�0.75 Å is
reproduced reasonably well by the RDA-m0 functional both
with respect to position and amplitude.

Though the positivity constraint on F� still seems to be
highly significant, this numerical study suggests that the fail-
ure of the RDA-m0 enhancement factor to satisfy that con-
dition everywhere does not necessarily have disastrous con-

sequences on the predicted interatomic forces. Presumably
this is because the interatomic forces do not depend explic-
itly on F�, only nuclear position gradients. For the correct
prediction of forces the conditions on the corresponding
Pauli potential are more important, since it enters explicitly
in the equation for forces �see Eq. �5� and discussion in Ref.
7�. �In principle, a functional of the Laplacian of the density
might be added to the enhancement factor, whereby the re-
gion where the original enhancement factor is negative is
removed without altering the predicted interatomic forces.�
Supposing that the density and the KS effective potential in
Eq. �5� are exact �i.e., taken from the reference KS calcula-
tion�, error will be introduced solely by the Pauli potential.
Since ��n /�RI� has large values, the near-nucleus behavior of
the Pauli potential is particularly important.

V. DISCUSSION AND CONCLUSIONS

Success for the OF-DFT calculation of quantum forces in
molecular dynamics requires a reliable explicit form for Ts.
Though previously published GGA-type �conjoint and nearly
so� KE functionals yield reasonable KE values, they fail to
bind simple molecules even with the correct KS density as
input: such functionals produce completely unusable inter-
atomic forces. This poor performance stems from violation
of the positivity requirement on the Pauli potential near nu-
clei. Our first remedy was to constrain conjoint GGA KE
functionals to yield positive-definite Pauli potentials. Those
functionals generate bound molecules and give semiquanti-
tative interatomic forces. However, they are singular at the
nuclear positions, hence, severely overestimate the KS ki-
netic energy. Examination of the near-nucleus behavior of
both original conjoint and modified-conjoint GGA function-
als shows that the singularities cannot be eliminated within
that simple functional form.

Truncation of the gradient expansion, at higher orders in s
and p, allows us to identify near-nucleus singular behavior
and obtain relationships among the coefficients of those trun-
cations that will eliminate such singularities. The resulting
reduced density derivatives and related reduced-density-
approximation functionals are promising for the simulta-
neous description of kinetic energies and interatomic forces.
A challenge is that there are many possible RDD functionals:
so far we do not have a systematic way to select a particular
form. Explicit analytic enforcement of the constraints as a
means of selection is yet to be done. Also, the RDA-m0 form
studied here is sufficiently complicated that we do not yet
know how to fit it such that all relevant constraints are sat-
isfied.

Two other aspects of the numerical results in Table II
relate to exact constraints, hence, deserve brief comment.
First, the von Weizsäcker KE is the exact Ts for two-electron
singlets. We have not enforced that limit, yet the error from
RDA-m0 in H2 is 36 mHartree. Second, violation of N rep-
resentability by an approximate Ts

approx�n� is signaled by
Ts

approx�n�−Ts�n��0 for at least one n.62 Five �out of 14� of
the RDA-m0 entries in Table II have such negative differ-
ences. MGGA has none versus all but two being negative for
the earlier GGA by Thakkar. However, interpretation of those
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FIG. 9. Numerical KS-LDA density of the Be atom, KS Pauli
potential and corresponding enhancement factor, and two approxi-
mate enhancement factors.
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computed differences is a bit tricky, in that they do not cor-
respond to the rigorous N-representability-violation test but
to Ts

approx�n�−Ts
KS,LDA�n�. That is, the reference KS KE is not

from the unknown exact density functional but from LDA.
With that limitation in mind, the results in Table II are at
least suggestive of the notion that the MGGA and RDA-m0
functionals are N representable or, in an operational sense,
close. It is also important to remember that the narrow goal
is a functional that can be parametrized to a small training set
which is relevant to the desired materials simulations. This
limitation of scope is a practical means for limiting the risks
of non-N representability. In addition, we have many RDD
forms open for exploration other than RDA-m0.

More positively, the RDA-m0 functional form shows en-
couraging signs of transferability outside the range of the
training set �recall: only geometries of two molecules and
energies of two atoms�. A similar fitting procedure was em-
ployed in our previous modified-conjoint GGA-type �e.g.,
PBE�� functionals, which also were constrained to producing
a positive-definite Pauli potential �except that the functionals
were fitted to energy differences�. Despite the small size and
limited chemical range of those training sets, the modified-
conjoint GGA functionals also exhibit encouraging transfer-
ability to periodic solid-state systems containing Si-O bonds,
e.g., �-cristobalite or �-quartz; see Ref. 7. Thus, there is
basis for the hope that the RDA-type functionals �which dif-
fer from the modified-conjoint GGA-type functionals by sup-
pression of nuclear-site singularities in the Pauli potential at
the nucleus and by reproducing absolute energies rather than
relative energies for deformed geometries of the training set
molecules� also will be transferable to extended systems.

We close with a word of caution. Despite this progress,
the functional forms examined to this point, e.g., Eq. �71�,
still may be too simple to provide robust and transferable KE
functionals for practical OF-DFT applications. Moreover, the
use of RDDs as basic variables in kinetic energy enhance-
ment factors guarantees the finiteness of the corresponding
Pauli potential only for those densities which satisfy a gen-
eralization of Kato’s cusp condition Eq. �59� and does not
guarantee the satisfaction of the non-negativity property,
Eqs. �16� and �17�. The latter constraint must be enforced
separately. Nevertheless, the RDA scheme appears quite
promising and further development of it is underway.
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APPENDIX A: FUNCTIONAL DERIVATIVES OF F�

This appendix provides details relative to derivation of the
expressions given in Eqs. �25�, �47�, and �48�. All these for-

mulas follow from an evaluation of an expression of the
generic form presented as v�

�2i��r�, Eq. �46�. That equation is
a straightforward expression of the rules for the evaluation of
a functional derivative. For clarity in what follows, we re-
state here the definitions

s2 =
�n · �n

�2n8/3 , p =
�2n

�2n5/3 , t0��n�;r� = c0n5/3, �A1�

where �2=4�3�2�2/3 and c0= 3
10�3�2�2/3. We also remind the

reader that

q =
�n · ��n · �n

�4n13/3 , q� =
�n · ��2n

�4n10/3 ,

q� =
�4n

�4n7/3 , q� =
��n:��n

�4n10/3 , �A2�

recall that A :B�
ijAijBji. In addition, we introduce the
sixth-order reduced density derivatives

h =
��n · ��n�2

�6n6 , h� =
���2n�2

�6n4 , h� =
���2n� · ���n · �n�

�6n5 .

�A3�

Finally, we write n instead of the more explicit form n�r�,
and we note that the derivatives of s2 and p with respect to n,
�n, and �2n are

��s2�
�n

= −
8s2

3n
,

��s2�
���n�

=
2 � n

�2n8/3 ,
��s2�

���2n�
= 0,

�p

�n
= −

5p

3n
,

�p

���n�
= 0,

�p

���2n�
=

1

�2n5/3 . �A4�

Substituting these relations into Eq. �46�, and restricting con-
sideration to cases where F� depends only on s2 and p �for
which all the terms we need to use are explicitly shown in
that equation�, we have immediately

v��r� = c0n2/3�5

3
F� −

8

3
s2� �F�

��s2�
 −
5

3
p� �F�

�p

�

−
2c0

�2 � · �� �F�

��s2�
�n

n
� +

c0

�2�2� �F�

�p

 . �A5�

At this point we remark that some terms that would other-
wise be expected in Eq. �46� are absent because of the zeros
in Eq. �A4�.

To proceed further we need to expand the last two terms
of Eq. �A5�. The first of these terms expands into

− 2c0n2/3�� �F�

��s2�
���n−1� · �n + n−1�2n

�2n2/3 �
+ � �2F�

��s2�2
�s2 · �n

�2n5/3 + � �2F�

�p � �s2�
�p · �n

�2n5/3 � . �A6�

Observing now that ��n−1�=−n−2�n and that

KARASIEV et al. PHYSICAL REVIEW B 80, 245120 �2009�

245120-14



��s2� = −
8s2

3n
� n +

2 � n · ��n

�2n8/3 ,

�p =
��2n

�2n5/3 −
5

3

��2n� � n

�2n8/3 , �A7�

the expression in Eq. �A6� can be brought to the form

+ 2c0n2/3��s2 − p�� �F�

��s2�
 + �8

3
s4 − 2q
� �2F�

��s2�2

− �q� −

5

3
s2p
� �2F�

�p � �s2�
� . �A8�

Continuing now to the final term of Eq. �A5�, we expand the
Laplacian obtaining initially

c0

�2�2� �F�

�p

 = c0n2/3�� �2F�

��s2� � p

 �2s2

�2n2/3 + � �2F�

�p2 
 �2p

�2n2/3

+ � �3F�

��s2�2 � p

�s2 · �s2

�2n2/3

+ 2� �3F�

��s2� � p2
�s2 · �p

�2n2/3 + � �3F�

�p3 
�p · �p

�2n2/3 � .

�A9�

Using Eq. �A7�, we next find

�2s2 = −
8

3
� · � s2

n
� n
 +

2

�2 � · ��n · ��n

n8/3 

= −

8

3
�−

s2

n2 � n · �n +
��s2� · �n

n
+

s2

n
�2n�

+
2

�2�−
8

3

�n · ��n · �n

n11/3 +
��n:��n + �n · ��2n

n8/3 � ,

�2p =
1

�2 � · ���2n

n5/3 
 −
5

3�2 � · � ��2n� � n

n8/3 

=

1

�2�−
5

3

��2n · �n

n8/3 +
�4n

n5/3�
−

5

3�2�−
8

3

��2n� � n · �n

n11/3 +
��2n�2

n8/3 +
��2n · �n

n8/3 � ,

�s2 · �s2 =
64s4

9n2 � n · �n −
32s2

3

�n · ��n · �n

�2n11/3

+ 4
��n · ��n�2

�4n16/3 ,

�s2 · �p = −
8s2

3

�n · ��2n

�2n8/3 + 2
���2n� · ��n · ��n�

�4n13/3

+
40s2

9

��2n� � n · �n

�2n11/3 −
10

3

��2n� � n · ��n · �n

�4n16/3 ,

�p · �p =
���2n�2

�4n10/3 −
10

3

��2n� � �2n · �n

�4n13/3

+
25

9

��2n�2 � n · �n

�4n16/3 . �A10�

Then, combining material from Eqs. �A5� and �A8�–�A10�,
and introducing the notations in Eqs. �A1�–�A3�, we obtain
the final result, applicable for any F� that depends only on s
and p:

v� = c0n2/3�5

3
F� − �2

3
s2 + 2p
� �F�

��s2�
 −
5

3
p� �F�

�p



+ �16

3
s4 − 4q
� �2F�

��s2�2
 + �88

9
s4 +

2

3
s2p −

32

3
q + 2q�


�� �2F�

��s2� � p

 + �40

9
s2p −

5

3
p2 −

10

3
q� + q�
� �2F�

�p2 

+ �64

9
s6 −

32

3
s2q + 4h
� �3F�

��s2�2 � p



+ �80

9
s4p −

16

3
s2q� −

20

3
pq + 4h�
� �3F�

��s2� � p2

+ �25

9
s2p2 −

10

3
pq� + h�
� �3F�

�p3 
� . �A11�

We may now specialize Eq. �A11� to the cases needed in the
present work. Taking first F�

GGA, which has no p dependence,
all the terms of Eq. �A11� containing derivatives with respect
to p vanish, leaving only the expression previously given as
Eq. �25�.

Turning next to the specific forms of F� discussed in Sec.
IV A, we note that F�

SGA=1+a2s2 is not only independent of
p, but is also linear in s2, so �F� /��s2�=a2 and �2F� /��s2�2

=0. This causes v�
SGA to have the form

v�
SGA = c0n2/3�5

3
�1 + a2s2� − a2�2

3
s2 + 2p
� , �A12�

which simplifies to the result given in Eq. �47�.
Finally, we consider F�

�4� as given in Eq. �45�. All the third
derivatives of F� in Eq. �A11� vanish; the first and second
derivatives of F� have simple forms. We have

v�
�4� = c0n2/3�5

3
�a4s4 + b2p2 + c21s

2p�

− �2

3
s2 + 2p
�2a4s2 + c21p� −

5

3
p�2b2p + c21s

2�

+ 2a4�16

3
s4 − 4q
 + c21�88

9
s4 +

2

3
s2p −

32

3
q + 2q�


+ 2b2�40

9
s2p −

5

3
p2 −

10

3
q� + q�
� . �A13�

Equation �A13� simplifies to the result given as Eq. �48� in
the main text.
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APPENDIX B: COMPUTATIONAL METHODS

We assess functionals by comparing results from them
with those of conventional orbital-dependent Kohn-Sham
calculations in the LDA using standard methods described in,
for example, Refs. 23 and 63–69. The reference molecular
KS calculations were done with a triple-zeta basis with po-
larization functions.70–72 All integrals were calculated by a
numerical integration scheme that, following Becke,73 uses
weight functions localized near each center to represent the
multicenter integrals exactly as a sum of �distorted� atomic
integrals. Radial integration of the resulting single-center
forms is accomplished by a Gauss-Legendre procedure,

while integration over the angular variables is done with
high-order quadrature formulas developed by Lebedev and
co-workers74,75 with routines downloaded from Ref. 76.
These computations were performed using routines devel-
oped by Salvador and Mayer77 and included in their code
FUZZY. The Vosko-Wilk-Nussair LDA �Ref. 68� was used.

Given the KS density, for each OF functional under study
we computed the total energy EOF-DFT from Eq. �3� and the
interatomic forces from Eq. �5�. The result is a non-self-
consistent calculation which tests whether a given OF func-
tional can reproduce Ts�nKS�, or at least �RTs�nKS� if nKS is
provided. There is no sense in trying to solve Eq. �4� with an
approximate OF functional that cannot pass this test.
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